An interior-point method for nonlinear optimization problems with locatable and separable nonsmoothness
نویسنده
چکیده
Many real-world optimization models comprise nonconvex and nonlinear as well as nonsmooth functions leading to very hard classes of optimization models. In this article a new interior-point method for the special but practically relevant class of optimization problems with locatable and separable nonsmooth aspects is presented. After motivating and formalizing the problems under consideration, modifications and extensions to standard interior-point methods for nonlinear programming are investigated in order to solve the introduced problem class. First theoretical results are given and a numerical study is presented that shows the applicability of the new method for real-world instances from gas network optimization.
منابع مشابه
Large scale portfolio optimization with piecewise linear transaction costs
We consider the fundamental problem of computing an optimal portfolio based on a quadratic mean-variance model of the objective function and a given polyhedral representation of the constraints. The main departure from the classical quadratic programming formulation is the inclusion in the objective function of piecewise linear, separable functions representing the transaction costs. We handle ...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملSolving Quadratic Multicommodity Problems through an Interior-Point Algorithm
Standard interior-point algorithms usually show a poor performance when applied to multicommodity network flows problems. A recent specialized interior-point algorithm for linear multicommodity network flows overcame this drawback, and was able to efficiently solve large and difficult instances. In this work we perform a computational evaluation of an extension of that specialized algorithm for...
متن کاملOn Decomposition Methods for a Class of Partially Separable Nonlinear Programs
We study two different decomposition algorithms for the general (nonconvex) partially separable nonlinear program (PSP): bilevel decomposition algorithms (BDAs) and Schur interior-point methods (SIPMs). BDAs solve the problem by breaking it into a master problem and a set of independent subproblems, forming a type of bilevel program. SIPMs, on the other hand, apply an interior-point technique t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURO J. Computational Optimization
دوره 3 شماره
صفحات -
تاریخ انتشار 2015